This is an outdated version published on 2025-05-31. Read the most recent version.

Precision Diagnostics for Monogenic Diabetes in Children

Authors

  • Hector I. Ortega MD 1 Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA Author https://orcid.org/0000-0002-7097-6442
  • Prof. Anna L. Gloyn, DPhil Departments of Pediatrics, Division of Endocrinology, Genetics and Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA Author

DOI:

https://doi.org/10.69734/1e8v6h36

Keywords:

Diabetes mellitus type 1, Maturity-onset diabetes of the young , Neonatal diabetes mellitus, Mitochondrial diabetes, Wolfram syndrome, lipodystrophy, genetic testing, insulin

Abstract

Monogenic diabetes, caused by a single-gene defect, accounts for roughly 1–5% of pediatric diabetes cases. Although relatively uncommon, correct identification of these subtypes is critical, as accurate classification can markedly influence both treatment and prognosis. However, distinguishing monogenic forms from type 1 (T1D) or type 2 diabetes (T2D) remains challenging due to overlapping features, such as early onset and variable insulin requirements. Many children with monogenic diabetes are misdiagnosed and, consequently, may not receive optimal therapy. Advances in sequencing technologies, combined with growing knowledge of the underlying genetic causes, now enable earlier, more precise diagnoses and offer opportunities to tailor therapy—often avoiding insulin in favor of targeted interventions. In this review, we summarize key categories of monogenic diabetes, including maturity-onset diabetes of the young (MODY), neonatal diabetes mellitus (NDM), and syndromic forms and outline current recommended diagnostic workflows and genetic testing strategies. Ultimately, we aim to provide clinicians with a clear, actionable framework for recognizing and managing these significant but often underrecognized forms of pediatric diabetes.

References

*** Smartphone users - scroll to the end of the References to view article. ***

Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med. 1974;43(170):339-357.

Tattersall R. Maturity-onset diabetes of the young: a clinical history. Diabet Med. 1998;15(1):11-14. DOI: 10.1002/(SICI)1096-9136(199801)15:1<11::AID-DIA562>3.0.CO;2-0.

Bonnefond A, Philippe J, Durand E, et al. Monogenic diabetes. Nat Rev Dis Primers. 2023;9(1):1-16. DOI: 10.103-8/s41572-022-00409-y.

Murphy R, Ellard S, Hattersley AT, et al. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. Commun Med. 2023;3(1):1-24. DOI: 10.1038/s43856-023-00345-2.

Salguero MV, Kleinberger JW, Prakash A, et al. Monogenic forms of diabetes. In: Lawrence JM, Casagrande SS, Herman WH, Wexler DJ, Cefalu WT, eds. Diabetes in America. National Institute of Diabetes and Digestive and Kidney Diseases; 2023.

Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest. 2021;131(3). DOI: 10.1172/JCI142244.

Kind L, Liu S, Stanojevic V, et al. Molecular mechanism of HNF-1A–mediated HNF4A gene regulation and promoter-driven HNF4A-MODY diabetes. JCI Insight. 2024;9(3). DOI: 10.1172/jci.insight.175278.

DeForest N, Cabreros C, Huang K, et al. Human gain-of-function variants in HNF1A confer protection from diabetes but independently increase hepatic secretion of atherogenic lipoproteins. Cell Genomics. 2023;3(1). DOI: 10.1016/j.xgen.2022.100213.

Li LM, Jiang BG, Sun LL. HNF1A: from monogenic diabetes to type 2 diabetes and gestational diabetes mellitus. Front Endocrinol. 2022;13:829565. DOI: 10.3389/ fendo.2022.829565.

Zhang J, Yang B, Chen M, et al. Identification and precision therapy for three maturity-onset diabetes of the young (MODY) families caused by mutations in the HNF4A gene. Front Endocrinol. 2023;14:1134442. DOI: 10.3389/fendo.2023.1134442.

Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet. 2024;15:1362977. DOI: 10.3389/fgene.20-24.1362977.

Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275-1281. DOI: 10.1016/S0140-6736(03)14571-0.

Naylor RN, Lonsdale J, Knight Johnson AE, et al. Precision treatment of beta-cell monogenic diabetes: a systematic review. Commun Med. 2024;4(1):1-17. DOI: 10.1038/s43856-023-00397-4.

Shepherd MH, Shields BM, Hudson M, et al. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycemic control after discontinuing insulin and metformin. Diabetologia. 2018;61(12):2520-2527. DOI: 10.1007/s00125-018-4728-6.

Østoft SH, Bagger JI, Hansen T, et al. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: a double-blind, randomized, crossover trial. Diabetes Care. 2014;37(7):1797-1805. DOI: 10.2337/dc13-3007.

Zaitoon H, Paoloni L, Maltoni G, et al. Glucagon-like peptide-1 analog therapy in rare genetic diseases: monogenic obesity, monogenic diabetes, and spinal muscular atrophy. Acta Diabetol. 2023;60(8):1099-1108. DOI: 10.1007/s00592-023-02085-0.

Gloyn AL. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat. 2003;22(5):353-362. DOI: 10.1002/humu.10277.

Chakera AJ, Steele AM, Gloyn AL, et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care. 2015;38(7):1383-1392. DOI: 10.2337/dc14-2769.

Pearson ER, Badman MK, Lockwood CR, et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1α and -1β mutations. Diabetes Care. 2004;27(5):1102-1107. DOI: 10.2337/diacare.27.5.1102.

Beltrand J, Busiah K, Vaivre-Douret L, et al. Neonatal diabetes mellitus. Front Pediatr. 2020;8:540718. DOI: 10.3389/fped.2020.540718

Yorifuji T, Higuchi S, Hosokawa Y, Kawakita R. Chromosome 6q24-related diabetes mellitus. Clin Pediatr Endocrinol. 2018;27(2):59-65. DOI: 10.1297/cpe.27.59.

Temple IK, Mackay DJ. Diabetes mellitus, 6q24-related transient neonatal. In: Adam MP, Everman DB, Mirzaa GM, et al., eds. GeneReviews®. University of Washington, Seattle; 2018.

Rubio-Cabezas O, Patch AM, Minton JA, et al. Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab. 2009;94(11):4162-4170. DOI: 10.1210/jc.2009-1137.

Flanagan SE, Edghill EL, Gloyn AL, Ellard S, Hattersley AT. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia. 2006;49(6):1190-1197. DOI: 10.1007/s00-125-006-0246-z.

Gloyn AL, Reimann F, Girard C, et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet. 2006;14(7):824-830. DOI: 10.1038/sj.ejhg.5201629.

Urano F. Wolfram syndrome: diagnosis, management, and treatment. Curr Diab Rep. 2016;16(1):6. DOI: 10.1007/s11892-015-0702-6.

Angelidi AM, Filippaios A, Mantzoros CS. Severe insulin resistance syndromes. J Clin Invest. 2021;131(4). DOI: 10.1172/JCI142245.

Mesika A, Klar A, Falik Zaccai TC. INSR-related severe insulin resistance syndrome. In: Adam MP, Everman DB, Mirzaa GM, et al., eds. GeneReviews®. University of Washington, Seattle; 2024.

Patni N, Garg A. Lipodystrophy for the diabetologist—what to look for. Curr Diab Rep. 2022;22(10):461-470. DOI: 10.1007/s11892-022-01484-x.

Zammouri J, Benhamed F, Magré J, et al. Molecular and cellular bases of lipodystrophy syndromes. Front Endocrinol. 2022;12:803189. DOI: 10.3389/fendo.2021.803-189.

Sekizkardes H, Cochran E, Malandrino N, Garg A, Brown RJ. Efficacy of metreleptin treatment in familial partial lipodystrophy due to PPARG vs LMNA pathogenic variants. J Clin Endocrinol Metab. 2019;104(8):3068-3076. DOI: 10.1210/jc.2018-02787.

Mosbah H, Vatier C, Fetita S, et al. Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: real‐life experience from a national reference network. Diabetes Obes Metab. 2022;24(8):1565-1577. DOI: 10.1111/dom.14723.

Yang M, Wan L, Gao J, et al. The mutations and clinical variability in maternally inherited diabetes and deafness: an analysis of 161 patients. Front Endocrinol. 2021;12:728043. DOI: 10.3389/fendo.2021.728043.

Lin WH, Yang IH, Cheng HE, Lin HF. Case report: late-onset mitochondrial disease uncovered by metformin use in a patient with acute verbal auditory agnosia. Front Neurol. 2022;13:863047. DOI: 10.3389/fneur.2022.863-047.

Kim NH, Siddiqui M, Vogel J. MELAS syndrome and MIDD unmasked by metformin use: a case report. Ann Intern Med. 2021;174(1):124-125. DOI: 10.7326/L20-0932.

Greeley SAW, Hattersley AT, Rubio-Cabezas O, et al. ISPAD clinical practice consensus guidelines 2022: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. DOI: 10.1111/pedi.13427.

American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care. 2022;45(Supplement 1). DOI: 10.2337/dc22-S002.

Thanabalasingham G, Pal A, Selwood MP, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206-1212. DOI: 10.2337/dc11-1243.

Shields BM, Amin MR, Acharya J, et al. Development of a clinical calculator to aid the identification of MODY in pediatric patients at the time of diabetes diagnosis. Sci Rep. 2024;14(1):10589. DOI: 10.1038/s41598-024-57631-9.

da Silva Santos T, da Conceição RA, Queiroz MS, et al. MODY probability calculator utility in individuals' selection for genetic testing: its accuracy and performance. Endocrinol Diabetes Metab. 2022;5(1). DOI: 10.1002-/edm2.332.

Fu J, Fang Q, Huang G, et al. A clinical prediction model to distinguish maturity-onset diabetes of the young from type 1 and type 2 diabetes in the Chinese population. Endocr Pract. 2021;27(8):776-782. DOI: 10.1016-/j.eprac.2021.02.009.

Santomauro AC, da Silva Santos T, Bueno de Oliveira CR, et al. The performance of the MODY calculator in a non-Caucasian, mixed-race population diagnosed with diabetes mellitus before 35 years of age. Diabetol Metab Syndr. 2023;15(1):15. DOI: 10.1186/s13098-023-00985-3.

Misra S, Shields B, Colclough K, et al. South Asian individuals with diabetes who are referred for MODY testing in the UK have a lower mutation pick-up rate than white European people. Diabetologia. 2016;59(10):2262-2265. DOI: 10.1007/s00125-016-4056-7.

Riddle MC, Philipson LH, Rich SS, et al. Monogenic diabetes: from genetic insights to population-based precision in care. Reflections from a Diabetes Care editors' expert forum. Diabetes Care. 2020;43(12):3117-3128. DOI: 10.2337/dci20-0065.

Colclough K, van Heugten R, Patel K. An update on the diagnosis and management of monogenic diabetes. Pract Diabetes. 2022;39(2):42-48. DOI: 10.1002/pdi-.2400.

Raimondo A, Chakera AJ, Thomsen SK, et al. Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet. 2014;23(24):6432-6440. DOI: 10.1093/hmg/ddu360.

Ellard S, Flanagan SE, Girard CA, et al. Permanent Neo-natal Diabetes Caused by Dominant, Recessive, or Com-pound Heterozygous SUR1 Mutations with Opposite Func-tional Effects. The American Journal of Human Genetics. 2007;81(2):375-382. DOI: 10.1086/519174.

Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philip-son LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia. 2024;67(5):940-951. DOI: 10.1007/s00125-024-06103-w.

Patni N, Hatab S, Xing C, Zhou Z, Quittner C, Garg A. A novel autosomal recessive lipodystrophy syndrome due to homozygous LMNA variant. J Med Genet. 2020;57(6):422-426. DOI: 10.1136/jmedgenet-2019-106395.

Muijnck C de, Brink JB ten, Bergen AA, Boon CJF, Gen-deren MM van. Delineating Wolfram-like syndrome: A systematic review and discussion of the WFS1-associated disease spectrum. Survey of Ophthalmology. 2023;68(4):641-654. DOI: 10.1016/j.survophthal.2023.01.012.

Chakera AJ, Steele AM, Gloyn AL, et al. Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. Diabetes Care. 2015;38(7):1383-1392. DOI: 10.2337/dc14-2769.

McCullough ME, Letourneau-Freiberg LR, Bowden TL, et al. Clinical Characteristics and Remission Monitoring of 6q24-Related Transient Neonatal Diabetes. Pediatric Dia-betes. 2024;2024(1):3624339. DOI: 10.1155/pedi/36-24339.

Flanagan SE, Mackay DJG, Greeley SAW, et al. Hypogly-caemia following diabetes remission in patients with 6q24 methylation defects – expanding the clinical phenotype. Diabetologia. 2013;56(1):218-221. DOI: 10.100-7/s00125-012-2766-z.

Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet. 2024;15:1362977. DOI: 10.3389/fgene.2024.1362977.

Greeley SAW, Hattersley AT, Rubio-Cabezas O, et al. ISPAD clinical practice consensus guidelines 2022: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. DOI: 10.1111/pedi.13427

Misra S, Shields B, Colclough K, et al. South Asian individuals with diabetes who are referred for MODY testing in the UK have a lower mutation pick-up rate than white European people. Diabetologia. 2016;59(10):2262-2265. DOI: 10.1007/s00125-016-4056-7.

Murphy R, Ellard S, Hattersley AT, et al. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. Commun Med. 2023;3(1):1-24. DOI: 10.1038/s43856-023-00345-2.

Naylor RN, Lonsdale J, Knight Johnson AE, et al. Precision treatment of beta-cell monogenic diabetes: a systematic review. Commun Med. 2024;4(1):1-17. DOI: 10.1038/s43856-023-00397-4.

Image of the first page of the article by Ortaga and Gloyn

Published

2025-05-31

Versions

How to Cite

Ortega MD, H. I., & Gloyn, DPhil, A. L. . (2025). Precision Diagnostics for Monogenic Diabetes in Children. SMART-MD Journal of Precision Medicine, 2(2), e119 - e128. https://doi.org/10.69734/1e8v6h36